Article by Daniel Sweet
___
Located on 100,000 hectares in the Mexican state of Sonora, the Sonora Lithium Project (SLP) includes ten lithium mining concessions owned by London-based Bacanora, a lithium development and exploration company.
Ganfeng Lithium, a Chinese lithium-ion battery producer, purchased a 29% stake in Bacanora in 2019, with an eye toward their Sonora holdings. A feasibility study produced by Bacanora established a Proven Mineral Reserve of 1.67Mt and a Probable Mineral Reserve of 2.85Mt across seven of the ten concessions in the SLP. This capacity makes the SLP one of the world’s larger—and by some accounts, the largest—developed sources of lithium. The estimated resource life of the concessions is 200 years, with an output of 17,500-35,000tpa Li2 CO3 per year.
The SLP involves open-pit mining throughout the concessions, and the company recently completed construction on a processing and upgrade facility in Hermosillo. That facility produced “high quality battery-grade (>99.5%) lithium carbonate during ongoing test work conducted over the last four years,” according to the Bacanora website, in line with Ganfeng Lithium’s stated ambitions to tap the growing demand for electric vehicle batteries.
Battery demand
Though perhaps most associated with consumer electronics, lithium demand in recent years has been driven by the widespread adoption of electric vehicles and other energy storage methods. According to a report by McKinsey, “the electric vehicle revolution is ushering in a golden age for battery raw materials, best reflected by a dramatic increase in the price” of lithium, and further, “the growing need for energy storage, e-bikes, electrification of tools, and other battery-intense applications is increasing” interest in lithium.
Despite the widely-recognized demand for lithium now and in the future, there is some debate about the ideal form of lithium for battery production. Lithium extraction can take on one of two forms—hard-rock and brine-based extraction—with varying effects in end battery products.
- More flexibility: the lithium hosted in spodumene can be processed into either lithium hydroxide or lithium carbonate. Brines initially can only be processed into carbonate, and then can be further processed into hydroxide at an additional cost
- Faster processing: brines can take a lot longer to process due to the evaporation required, making for an inconsistent process compared to spodumene
- Higher quality: spodumene typically hosts higher lithium content in comparison to most brines
- Geographic location: rock minerals are more homogeneously distributed on earth
- Comparable costs: while each mining operation may have its own defining factors regarding profitability, the hard-rock operations utilize low-cost, traditional mining techniques
Application | Typical Valve types |
Spodumene flotation | Knifegate and segment valves |
Calcination | Ball and butterfly valves |
Cooler | Ball and butterfly valves |
Ball mill discharge | Knife gate, pinch and diaphragm valves |
Sulphuric acid feed | Butterfly and ball valves |
Leaching Process | Ball, sleeved plug and knife gate valves |
Thickening underflow | Pinch and knife gate valves |
Thickening overflow | Rubber-lined butterfly valves and knife gate valves |
Purification and filtering | High performance butterfly, process ball and pinch valves |
Evaporation | Butterfly, segment and ball valves |
Precipitation | Butterfly and ball valves |